对一种外并联涡轮基组合循环发动机进气道进行了基于定常和非定常的模态转换过程气动特性分析,并研究了模态转换时间对进气道气动性能的影响。最终获取了进气道模态转换过程的流动特性,并分析了模态转换时间对外并联TBCC进气道的气动性能影响。结果表明:低速唇口旋转角度相同时,不同模态转换时间下的气动性能参数基本一致。
吸气式高超声速飞行器速域的不断拓展,使进气道部件在强烈的气动载荷以及热载荷作用下与外部流场耦合效应明显,同时高温流动中的真实气体效应会进一步加剧进气道内多场耦合关系的复杂性.通过在多场耦合仿真中考虑真实气体效应影响,针对壁面共轭耦合传热下高超声速进气道气动性能以及结构温度场的非定常变化进行数值模拟.研究发现:受壁温升高的影响,300 s时刻进气道出口气流温度相比初始时刻上升 13.30%,压力升高 13.53%,总压恢复系数下降 2%,而流量系数几乎不发生变化.50 s时刻,唇缘和前缘处壁温达到 2 350 K,内通道最高壁温为 1 200 K,而在300 s时刻内通道最高壁温也接近1 900 K.因此在兼顾内通道防热设计的同时,要着重考量前缘及唇缘热防护设计的可靠性.
为了探索模型缩尺比对高超声速进气道气动性能的影响,对不同缩尺比的二元高超声速进气道开展了数值模拟研究,结果表明:随着缩尺比的增大,进气道流量系数、隔离段出口总压恢复系数和马赫数均逐渐增大,而静压比逐渐减小,且来流马赫数越高,上述参数变化幅度越大.由理论与数值模拟分析可知,上述现象主要是由于不同缩尺比下,进气道当地雷诺数不同,导致进气道附面层相对厚度变化,进而影响进气道气动性能.理论分析了进气道总压恢复系数与缩尺比的定量关系,就进气道而言,进气道进口处附面层相对厚度减小1%,隔离段出口总压恢复系数提高约0.7%.
采用数值仿真方法对某无人机S弯进气道内流场结构进行了分析,对出口截面流场特征及出口参数进行了研究.利用三维数值仿真方法,对几何参数对S弯进气道气动特性的影响进行了对比,其中包括S弯偏移距离和S弯进气道长度的影响.研究结果表明:S弯进气道内部存在典型的横向涡结构.S弯长度的增加会显著降低涡结构区域及分离区域,改善流场结构,同时提升出口总压恢复系数,控制出口畸变.
为探究壁面粗糙度对于高超声速进气道气动性能的影响,采用经过校验的数值仿真和理论分析相结合的方法进行研究.结果显示:同一飞行马赫数下,随着壁面粗糙度的增加,进气道的流量系数、总压恢复系数和出口马赫数逐渐降低,而静压比、压差阻力系数、摩擦阻力系数以及起动马赫数则逐渐增大;不同飞行马赫数/不同钝化半径下,进气道性能参数随壁面粗糙度的变化规律相似,均表现出较好的拟合规律,据此获得的拟合公式及光滑壁面进气道的气动性能可预估不同壁面粗糙度下进气道的气动性能;就本文研究的进气道而言,当壁面相对粗糙度从0增加至0.625%时,进气道起动马赫数从4.25增加至4.85.壁面粗糙度增加,导致进气道沿程附面层增厚是进气道气动性能参数出现上述变化规律的主要原因.
提出了一种基于内转式进气道利用二元楔板转动的TBCC进气道可调设计方法及方案,进气道采用平动式模态转换装置,并对其不同来流马赫数及模态转换过程的气动特性开展了三维数值模拟分析,同时探究了进气道方转圆扩张段典型参数对进气道性能影响.结果显示:给出的可调进气道变几何方案解决了高马赫数气动性能与低马赫数起动性能的兼容问题,平动式模态转换装置保证了涡轮通道与冲压通道流量的线性过渡,方转圆段面积变化规律对本文进气道性能影响较小,中心线变化规律对进气道性能影响较大,其中对出口畸变影响显著.该方案有很好的工程实现性,本研究可为此类内转式TBCC可调进气道研制提供参考.
对不同来流马赫数及不同反压下等直隔离段的出口温度、压力和马赫数进行了分析.通过曲线拟合,得到了不同反压下隔离段出口温度、压力及马赫数间的拟合式,据此给出了预估任意反压下,隔离段出口马赫数和温度的方法;研究了隔离段最大承受反压与无反压下隔离段出口马赫数的关系,分别给出了均匀来流和非均匀来流时隔离段最大承受反压的拟合关系式,为最大反压比的估算提供了方法;同时还给出了均匀来流条件下等直隔离段长高比的工程选取拟合式.
首先对矩形截面高超声速进气道设计方法进行了研究,给出了设计流程,并据此设计了矩形截面高超声速进气道.接着对其进行了三维数值仿真研究,给出了进气道性能参数随来流马赫数、飞行迎角及飞行高度的变化规律.最后设计了实验模型,并进行了高焓风洞实验验证.数值模拟及高焓风洞实验验证均表明:本文采用的设计方法可达到预期的设计效果,设计的进气道达到了相应的设计要求,本文采用的数值仿真方法可以较为准确地模拟高超声速进气道内的流动,数值模拟结果可信.
为了改善宽马赫数范围工作的进气道性能,对矩形截面高超声速变几何进气道进行了研究,提出并设计了一种包括唇口开启、唇口后退等几何动作的变几何进气道设计方案.据此在马赫数Ma=4.0~6.5范围内设计了矩形截面高超声速变几何进气道,采用数值仿真方法对其气动性能开展了研究,并与定几何进气道性能进行了对比.研究结果表明:设计马赫数及高于设计马赫数条件下,变几何进气道与定几何进气道的性能基本相同.低于设计马赫数时,变几何进气道的性能明显优于定几何进气道.
对设计工作马赫数为4.5~6.5的矩形截面高超声速进气道进行了马赫数为6,5及4的高焓风洞实验研究,获得了进气道在不同反压下的性能参数及沿程静压分布.实验结果显示,设计状态下(Ma=6,a=0°),进气道的流量系数和总压恢复系数分别为0.97和0.41,增压比约为来流静压的35倍,隔离段出口马赫数不大于2.6;最大承受反压不小于来流静压的114.5倍.研究还发现,反压升高引起的激波串可停留在内压段,且不影响进气道的流晕捕获;当Ma=5,a=0°时,进气道的流量系数不低于0.77,总压恢复系数在0.49~0.67之间.设计工作马赫数及攻角范围内,进气道内未发现明显的流动分离,均可正常起动工作.
为深入探究唇罩侧板后掠对二元高超声速进气道起动性能的影响规律,采用风洞试验与三维数值模拟分析相结合的方法,对比分析了侧板不同后掠状态下的不起动流场特征,细致地研究了后掠角度影响进气道起动的流动机理.研究结果表明:唇罩后掠能够提高进气道的起动能力,来流Ma=5.0和Ma=4.0时,进气道的最小起动后掠角分别为75°和82.5°.Ma=5.0来流条件下,不起动的分离包前缘形态在一定范围内基本不受后掠角影响.唇罩后掠角度增大时主要通过侧板的展向溢流,改变分离包的位置及形态,进而通过降低分离包内的逆压梯度来影响进气道的起动性能.
为了探究前体典型几何参数对高超声速前体/进气道气动特性的影响,在相同的前体外压缩角度和几何长度下,对基于圆锥截线参数控制横向截面的高超声速前体流动特性开展了三维数值模拟分析.采用控制变量法研究了高超声速前体宽度比、形状参数、形状角度参数以及水平半宽控制曲线次数对高超声速前体/进气道气动性能的影响.结果显示:上述四个几何参数对前体横向压力梯度的构建均产生一定的影响,导致前体横向溢流,进而影响前体/进气道的气动性能.增大前体宽度比、形状参数、水平半宽控制线次数,减小形状角度参数,可减小前体展向压力梯度及横向溢流,提高前体/进气道流量捕获特性,在本文研究范围内,上述参数变化对应的前体/进气道流量系数分别增加了25.1%,13.7%,20.3%及12.2%.
为了降低内转式进气道的音爆强度,设计了一种具有曲内收缩前体和零度唇罩角的流线追踪内转式低音爆进气道,采用数值仿真方法初步研究其在不同工况下的流场结构和流动特征.结果表明:由于零度唇罩角,低音爆进气道的唇罩激波微弱,对唇罩外侧的流场影响较小,因此内转式低音爆进气道的音爆显著低于常规内转式进气道,其中在设计马赫数Mad=2.2通流状态下相比下降约94.18%;由于内唇罩面向内偏折,导致唇口反射激波强度增加,总压损失增加,内转式低音爆进气道总压恢复系数略低于常规内转式进气道;内转式低音爆进气道的音爆不但与其唇罩角有关,而且与其飞行工况有关,飞行攻角越大、来流马赫数Ma∞
运用数值模拟方法对某型室内试车台流场特性进行研究,发现矢量发动机喷管直排时试车间流场结构较均匀,在发动机入口前的流体域内未出现大尺寸涡流,试车间内气流总压沿流向逐渐降低,其中气流通过进气塔内的消声器时总压损失最大,达到0.38%.在此基础上,继续探究发动机喷管发生偏转时试车间流场特性,给出了喷管偏转角度对试车间流场特性的影响规律,在喷管偏转5°时,引射筒内出现较大范围涡流,形成流动堵塞,大幅度降低试车间的引射流量;随着喷管偏转角度增加,引射筒内涡流强度逐渐减弱,引射流量随之增加,至喷管偏转 15°时涡流消失.试车间内流场气动参数均受喷管偏转角度的影响,在喷管偏转 20°时,试车间引射系数达到最大值,为 10.97.
对一种Ma=2.5~5.0范围工作的飞行器推进系统曲面压缩定几何进气道设计开展了初步研究,获得了该进气道的内外波系、流场性能及攻角特性,并对其前体构型做了相关研究.二维仿真模拟结果显示,采用曲面压缩设计的定几何进气道在Ma=2.5~5.0范围内均可正常工作,且具有较高的流量捕获能力;在二维构型基础上,开展了进气道三维构型设计,研究了攻角对三维进气道气动性能的影响,并对进气道三维构型开展了前体构型设计,对比分析了前体构型对进气道气动性能的影响.三维数值模拟结果显示,三维进气道同样可以在Ma=2.5~5.0范围内正常工作,但气动性能略低于二维流动情况;喉道总压恢复在α=-4°时达到极值;Case3的升阻比系数对于攻角变化较为敏感,在α<-4°时,Case3的升阻比系数占据优势地位.
对典型高超声速二元进气道二维流场进行了数值分析,研究了高超声速进气道不起动和再起动过程,发现当高超声速进气道不起动发生后,加大来流马赫数到起动马赫数,进气道不能立即再起动,继续加大来流马赫数到一定数值时,进气道可以再起动,但再起动马赫数远大于起动马赫数,小于设计马赫数.同时还发现高超声速进气道再起动过程也存在迟滞回路现象,但不同于常规进气道的再起动特性.
对一系列不同收缩比、不同波系配置的内压缩通道二维流场进行了数值模拟.研究了面积收缩比、飞行高度和来流攻角对高超声速进气道起动性能的影响,提出了进口起动马赫数和来流起动马赫数的概念.研究表明,当进气道收缩比增大时,进气道的进口起动马赫数增大;来流起动马赫数由外压波系强度和进口起动马赫数决定,所以来流攻角变化改变外压波系强度,从而改变来流起动马赫数;随着飞行高度的增加,来流起动马赫数和进口起动马赫数增大,造成这一变化的原因是飞行高度不同,来流雷诺数不同,造成收缩段进口截面附面层厚度不同.
为了实现涡轮基组合循环(TBCC)推进系统平稳模态转换过程的模拟,在前期风洞试验研究的基础上对串联式TBCC进气道模态转换模拟器进行重新设计.采用线性化及非对称的思路对该模拟器进行设计并对其特性展开数值仿真研究.结果表明:该模拟器不仅需要模拟发动机工况改变引起的背压变化,而且能通过流通截面面积线性变化,实现两个通道的流量分配.该装置的特点是能保证模态转换过程中每一点的涡轮/冲压通道的总堵塞比不变,使本文所研究的进气道在总堵塞比保持为65%时进行模态转换,结尾激波基本维持在喉道等直段内且进气道出口马赫数基本维持在0.30,流量系数基本为0.45,涡轮/冲压通道流量呈线性变化,与预期目标一致.