磷虾算法优化多分类支持向量机的轴承故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19287/j.cnki.1005-2402.2019.05.023

磷虾算法优化多分类支持向量机的轴承故障诊断

引用
为了提高滚动轴承故障类型诊断准确度,提出了磷虾算法优化多分类支持向量机的轴承故障诊断方法.对于时频域特征参数的提取,将CEEMD算法与小波包优势结合,提出了CEEMD与小波包半软阈值去噪相结合的提取方法;对于特征参数降维,针对轴承振动信号的非线性特点,使用局部线性嵌入算法降维,对降维后特征参数使用模糊C均值聚类进行验证,可以看出LLE降维不仅降低了计算量而且有利于模式识别;将二叉树法与投票法支持向量机结合,给出了混合多分类支持向量机,使用磷虾算法对其进行参数优化.实验验证可知,磷虾算法优化的多分类支持向量机具有很高的输出精度,轴承状态识别准确率为100%,使用粒子群算法优化的支持向量机输出精度低,轴承状态识别准确率为79%.

滚动轴承、故障诊断、多分类支持向量机、磷虾算法、局部线性嵌入算法

TH133.33

省教育厅科研课题KJ2018ZBB022

2019-06-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

130-136

相关文献
评论
暂无封面信息
查看本期封面目录

制造技术与机床

1005-2402

11-3398/TH

2019,(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn