基于深度特征融合的红外弱小目标检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13705/j.issn.1671-6841.2022113

基于深度特征融合的红外弱小目标检测方法

引用
红外弱小目标具有信噪比低、目标尺寸小、特征不明显等特点,加之场景复杂度不断提升,杂波干扰严重,导致现有的红外弱小目标检测方法在面对复杂场景时性能衰减.综合手工方法提取目标单一的显著特征及深度学习方法提取图像综合特征的优势,设计了基于深度学习的红外弱小目标深度特征融合检测网络模型.首先,模型利用多尺度自适应特征提取网络来提取红外图像中弱小目标的原始特征与平滑度图像中弱小目标的平滑度特征;其次,为提高目标显著度,提出了一种多层级联特征融合策略,实现特征提取网络中小目标原始特征与平滑度特征的融合;最后,利用多层级联特征融合映射网络对红外弱小目标进行特征映射与背景抑制,获得背景杂波被极大抑制的红外弱小目标特征映射图像.实验结果表明,同现有的基于深度学习与基于手工特征的检测方法相比,所提出的检测方法在各种复杂的场景中都拥有较高的准确率及较低的虚警率,同时拥有较快的检测速度.

红外技术、弱小目标检测、深度学习、平滑度图像、特征融合

55

TP391.41(计算技术、计算机技术)

国家自然科学基金;河南省重点研发与推广专项科技攻关项目

2023-05-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

65-72

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

55

2023,55(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn