模拟人工蜂群的高维数据特征选择算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13705/j.issn.1671-6841.2021539

模拟人工蜂群的高维数据特征选择算法研究

引用
针对高维数据集结构复杂且冗余度高的问题,提出一种新型二进制人工蜂群算法进行特征选择.该算法在雇佣蜂蜜源搜索阶段应用差分思想,增加多项式差分变异算子,实现蜜源更新环节的多维性、高效性;在跟随蜂阶段和侦察蜂阶段分别引入交叉算子和最优保存策略,进一步打破局部最优,有效提升了人工蜂群算法的收敛效果;对蜜源的二进制初始化处理,使得算法在特征选择过程中取得了良好表现.在4个Benchmark测试函数上进行实验,结果表明,新算法的寻优精度和收敛速度优于其他4种经典搜索算法.同时,选取7个常用高维数据集进行特征选择,并与7种经典降维算法进行对比,发现新算法的特征约简程度普遍高于88%,并且随着数据集维度的增高,新算法的降维程度和分类精度优于其他7种降维算法.

特征选择、高维数据、人工蜂群算法、差分进化算法

55

TP181(自动化基础理论)

国家自然科学基金;湖南省自然科学基金项目;湖南省教育科学十三五规划基金项目

2023-05-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

57-64

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

55

2023,55(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn