基于多视图和注意力推荐网络的三维物体识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13705/j.issn.1671-6841.2021468

基于多视图和注意力推荐网络的三维物体识别方法

引用
传统物体识别方法是从单一图像中通过人工提取图像特征,存在成本高、质量低等问题.针对上述问题,提出一种基于多视图和注意力推荐网络的三维物体识别方法,多视图很好地保留了物体在局部和全局上的特征;注意力模块可以有效地对视图上关键的特征聚焦,忽略无关或干扰特征.该方法利用一组多视图作为输入数据,通过卷积神经网络端到端提取物体特征,在卷积层加入注意力模块,实现视图关键区域的定位和剪裁,将处理后的视图送入另外一个卷积层,两个相同卷积操作提取的特征在池化层聚合,利用稀疏表示分类器对特征描述子进行分类识别.通过两个公开数据集的实验表明,所提算法对物体图像的识别准确度优于传统算法.

三维物体识别、多视图、注意力模块、卷积神经网络、稀疏表示分类器

55

TP391.4(计算技术、计算机技术)

河北省自然科学基金F2019202054

2023-01-11(万方平台首次上网日期,不代表论文的发表时间)

共7页

57-63

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

55

2023,55(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn