基于SGD的决策级融合维度情感识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13705/j.issn.1671-6841.2021299

基于SGD的决策级融合维度情感识别方法

引用
在双模态维度情感识别中,存在由于信息不全面而导致预测性能不高的缺陷,且使用决策级融合方法进行融合大多依赖支持向量回归算法,但该算法无法有效处理大样本情况.为了解决以上问题,在语音和文本模态的基础上增加动作捕捉(motion capture,Mocap)数据,并针对该多模态数据提出一种基于随机梯度下降(stochastic gradi-ent descent,SGD)的决策级融合维度情感识别方法.结合多任务学习机制,利用不同的深度学习模型分别对语音、文本和Mocap特征进行训练,并基于决策级融合方法实现多模态维度情感识别.在IEMOCAP数据集上的实验结果表明,Mocap数据更有助于提高效价维的值,结合更多情感数据有助于提升维度情感识别的预测性能,基于SGD进行决策级融合得到的一致性相关系数均值高于其他回归算法.

随机梯度下降、多模态、维度情感识别、特征融合、动作捕捉数据、多任务学习

54

TP391.4(计算技术、计算机技术)

国家自然科学基金;湖北省高等学校优秀中青年科技创新团队计划项目;湖北省高校知识产权推进工程项目;湖北省教育厅科学研究计划重点项目

2022-05-05(万方平台首次上网日期,不代表论文的发表时间)

共6页

49-54

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

54

2022,54(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn