基于时频融合卷积神经网络的股票指数预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13705/j.issn.1671-6841.2021225

基于时频融合卷积神经网络的股票指数预测

引用
传统的股票指数预测方法是在含噪声、非平稳以及非线性的原始股指序列数据上实施的,这将导致预测精度的下降.为了解决这个问题,提出了一种基于时频融合卷积神经网络的股指预测方法.首先通过引入变分模态分解(VMD)将原始序列数据分解到频域特征上,使得分解后的股指数据具有低信噪比,同时具有更明显的趋势性和平稳性.进一步结合时序卷积神经网络(TCN),构建了时频融合的卷积神经网络模型.最后在6个实际数据集上与8个基准方法进行比较,实验结果表明该方法具有更高的预测精度和更好的解释性.

股票指数预测;时频融合;变分模态分解;时序卷积网络

54

TP311(计算技术、计算机技术)

教育部人文社会科学研究项目;中央高校基本科研业务专项资金项目

2022-02-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

81-88

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

54

2022,54(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn