一种双视图信息融合的乳腺肿块自动检测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13705/j.issn.1671-6841.2020234

一种双视图信息融合的乳腺肿块自动检测算法

引用
针对基于单视图的深度学习乳腺肿块检测算法假阳性率较高问题,提出一种双视图信息融合的乳腺肿块自动检测算法.首先建立双曲正割模型,利用互相关法自动搜索乳腺X线摄影图像中的肿块感兴趣区域,并根据胸壁线、乳头位置在双侧头尾位和内外侧斜位图像上建立物理坐标系,筛选标注假阳性区域以在数据层扩充监督学习信息;其次,设计空间金字塔池化模块有效融合基于YOLOv3主干网络提取的多尺度局部特征以提高检测敏感性;最后,在类别损失函数中增加聚焦参数,通过调节算法学习过程以提高检测特异性.充分利用双视图数据提供的先验信息提高检测正确率,实验结果表明检测敏感性达到92.0%,特异性达到87.7%,平均每幅图像假阳性0.041个,其检测性能较原模型大幅提升,且具有较好的鲁棒性.

乳腺癌、乳腺X线摄影、计算机辅助诊断、双视图、YOLOv3、faster-RCNN、空间金字塔池化、聚焦损失函数

52

TP391.4(计算技术、计算机技术)

河南省联合基金重点项目U1604262

2020-11-30(万方平台首次上网日期,不代表论文的发表时间)

共9页

28-36

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

52

2020,52(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn