基于平衡概率分布和实例的迁移学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13705/j.issn.1671-6841.2019439

基于平衡概率分布和实例的迁移学习算法

引用
在联合匹配边缘概率和条件概率分布以减小源域与目标域的差异性时,存在由类不平衡导致模型泛化性能差的问题,从而提出了基于平衡概率分布和实例的迁移学习算法.通过基于核的主成分分析方法将特征数据映射到低维子空间,在子空间中对源域与目标域的边缘分布和条件分布进行联合适配,利用平衡因子动态调节每个分布的重要性,采用加权条件概率分布自适应地改变每个类的权重,同时融合实例更新策略,进一步提升模型的泛化性能.在字符和对象识别数据集上进行了多组对比实验,表明该算法有效地提高了图像分类的准确率.

迁移学习、平衡分布、类不平衡、实例更新、领域自适应

52

TP3(计算技术、计算机技术)

河南省高校科技创新团队支持计划项目17IRTSTHN013

2020-08-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

55-61

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

52

2020,52(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn