基于变分自编码器的问题识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13705/j.issn.1671-6841.2018192

基于变分自编码器的问题识别方法

引用
在非正式问答语料中,往往存在问题文本中包含多个子问题的情况,需要将每个子问题分别识别出来.由于标注样本的数目太小,并且存在海量的未标注样本,可以用半监督深度学习方法来进行问题识别.采用了变分自编码器(variational auto-encoder, VAE),并且结合了在深度学习模型中广泛应用的注意力机制.实验结果表明,不管是F值还是准确率,变分自编码器和注意力机制的结合可以显著地提升问题识别的性能.

非正式、问题识别、半监督、变分自编码器、注意力机制

51

TP391(计算技术、计算机技术)

国家自然科学基金项目61331011,61672366

2019-08-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

79-84

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

51

2019,51(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn