基于改进型CNN的多聚焦图像融合方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13705/j.issn.1671-6841.2018180

基于改进型CNN的多聚焦图像融合方法

引用
针对多聚焦图像融合问题,提出一种基于改进型卷积神经网络(convolutional neural network,CNN)的图像融合方法.首先,阐述了多聚焦图像融合问题与CNN中分类问题的一致性关系;其次,对经典的CNN模型加以改进,构建了改进型CNN模型;最后,将待融合源图像输入改进型CNN模型进行实验仿真.仿真结果表明,与现有的代表性融合方法相比,该方法无论在直观视觉效果还是客观评价指标方面均具有显著的优势.

图像融合、多聚焦、卷积神经网络、池化层

51

TP181(自动化基础理论)

国家自然科学基金项目61309008,61309022;信息保障技术重点实验室开放基金项目KJ-17-105;陕西省自然科学基础研究计划面上项目2018JM6047

2019-05-23(万方平台首次上网日期,不代表论文的发表时间)

共5页

29-33

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

51

2019,51(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn