基于序列注意力机制的卷积神经网络异常检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13705/j.issn.1671-6841.2018149

基于序列注意力机制的卷积神经网络异常检测

引用
随着互联网的飞速发展,Web攻击已经成为目前最严峻的网络安全威胁之一.一小段潜藏在正常Web请求中的恶意代码极有可能导致严重的信息泄露或其他安全事故.针对这一威胁,现有的研究主要集中于模式匹配与语法分析.然而,模式匹配和语法分析严重依赖于人力与专家知识,且通常只能检测出是否具有威胁,但不能定位恶意代码区域.提出一种新的卷积神经网络算法,可以从Web请求中检测出SQL注入攻击、Command攻击、本地文件包含和跨站脚本攻击等.得益于序列注意力机制,所提出的算法还可以从URL中定位出恶意代码的位置.实验结果表明,SA-CNN可以有效检测和定位URL中的恶意代码,并在几个公开的短文本分类数据集上也有良好的表现.

网络攻击、序列注意力机制、分类、深度学习

51

TP319(计算技术、计算机技术)

国家重点研发计划项目2016QY01W0200;国家自然科学基金项目61502066;重庆市基础与前沿研究计划项目cstc2015jcyjA40018;重庆市教委科学技术研究项目KJ1500438

2019-05-23(万方平台首次上网日期,不代表论文的发表时间)

共6页

17-22

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

51

2019,51(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn