彩色图像分割的FCM预分类核极限学习机方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13705/j.issn.1671-6841.2017094

彩色图像分割的FCM预分类核极限学习机方法

引用
在研究聚类算法与极限学习机的基础上实现了一种具有模糊C均值聚类算法(FCM)预分类的核极限学习机(KELM)及其在彩色图像分割中的应用.该算法采用模糊C均值聚类算法预分类训练样本,再提取其图像特征作为特征属性对核极限学习机进行训练产生分类器,进而对彩色图像进行分割.经实验验证,该算法分割彩色图像在分割速度和精度上优于FCM预分类的BP人工神经网络以及FCM预分类的支持向量机,是一种高效的彩色图像分割算方法.

图像分割、聚类算法、核极限学习机

50

TP391(计算技术、计算机技术)

国家自然科学基金项目61473266

2018-06-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

75-80

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

50

2018,50(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn