一种新的支持向量分类算法ACNN-SVM
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

一种新的支持向量分类算法ACNN-SVM

引用
针对NN-SVM算法的不足,提出了一种新的支持向量分类算法--ACNN-SVM.先对训练样本集进行最近邻修剪,用SVM训练得到一个SVM模型,然后,计算最近邻修剪后的训练样本集中样本到超平面的距离,如果距离差大于给定的阈值则将其从最近邻修剪后的训练样本集中删除,最后对冉修剪后的样本集用SVM训练得到一个最终的SVM模型.实验表明,ACNN-SVM算法的效果优于NN-SVM算法.

NN-SVM算法、ACNN-SVM算法、超平面距离、阈值

40

TP391.8(计算技术、计算机技术)

国家自然科学基金资助项目,编号 30671639;江苏省方然科学基金资助项目,编号BK2005134

2008-11-06(万方平台首次上网日期,不代表论文的发表时间)

共3页

56-58

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

40

2008,40(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn