基于混合条件模型的Web信息抽取
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于混合条件模型的Web信息抽取

引用
针对传统Web信息抽取的隐马尔可夫模型对初值十分敏感和在实际训练中极易得到局部最优模型参数,提出了一种最大熵和最大熵马尔可夫模型相结合的条件模型.该方法对输入的Web页面进行解析并构建HTML树,通过计算HTML子树结点的熵定位数据域,允许观察值表示任意重叠特征(像词、大写、HTML标记、语义)和定义状态序列给予观察序列的条件概率实现了Web信息抽取.实验结果表明,新的方法在精确度和召回率指标上比传统隐马尔可夫模型和最大熵马尔可夫模型具有更好的性能.

Web信息抽取、最大熵马尔可夫模型、条件模型、最大熵、隐马尔可夫模型

40

TP391(计算技术、计算机技术)

湖南省自然科学基金资助项目,编号04JJ40051;湖南省教育厅科研项目,编号06c724

2008-11-06(万方平台首次上网日期,不代表论文的发表时间)

共4页

52-55

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

40

2008,40(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn