神经网络TSP问题仿真分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-6841.2004.01.011

神经网络TSP问题仿真分析

引用
描述了Hopfield神经网络和自组织特征映射神经网络解决TSP问题时的求解过程和仿真算法.通过对两种算法的仿真比较,得出以下结论:对于较大规模的TSP问题,SOFM模型的寻优结果要优于HNN模型寻优结果;HNN对网络模型参数和初始条件具有很强的依赖性且调整参数组合非常困难,而SOFM的参数设置和调整相对要简单得多;SOFM算法对待解决问题的拓扑分布不敏感,而HNN算法的收敛性对待求解问题的自身分布有很强的依赖性;当待求解问题的数目增大时,SOFM算法的运算时间增加缓慢,而HNN算法的运算时间增加较快.因此,在解决TSP问题时,自组织特征映射神经网络比Hopfield神经网络的效率高,随着问题规模的增大,其优势更为明显.

Hopfield神经网络(HNN)、自组织特征映射(SOFM)、旅行商问题 (TSP)、仿真

36

TM135(电工基础理论)

河南省教育厅自然科学基金2000510004

2004-04-23(万方平台首次上网日期,不代表论文的发表时间)

共4页

45-48

相关文献
评论
暂无封面信息
查看本期封面目录

郑州大学学报(理学版)

1671-6841

41-1338/N

36

2004,36(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn