基于BP神经网络的南通市建设用地需求预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1007-7588.2009.08.014

基于BP神经网络的南通市建设用地需求预测

引用
以南通市1988年~2006年社会经济发展和建设用地数据,利用二元变量相关分析选取南通市建设用地规模扩张的驱动因子,分别采用多元回归分析和BP神经网络构建建设用地需求预测模型.在模型比较优选的基础上,预测未来南通市建设用地需求量,并应用灰色系统法结合趋势判断对预测结果合理性进行了验证.结果表明,运用全部引入法进行多元回归分析,预测模型置信程度较低;运用逐步回归法进行模型优化,多重共线性消除的同时多数驱动因子在预测模型中被剔除,造成指标选取不足;而基于BP神经网络的建设用地需求预测模型融合了各驱动因子对建设用地规模的影响,模型变异系数仅为1.78%,运用该模型可有效提高建设用地需求预测精度,计算结果较合理.

BP神经网络、建设用地、预测、南通市

31

F3(农业经济)

国家科技支撑计划2006BAB15804;国家自然科学基金70573052

2009-10-16(万方平台首次上网日期,不代表论文的发表时间)

共7页

1355-1361

相关文献
评论
暂无封面信息
查看本期封面目录

资源科学

1007-7588

11-3868/N

31

2009,31(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn