10.3969/j.issn.1002-7572.2011.19.023
“隐秘”的“二次”情结
一元二次方程,初中早有接触.高中也常常涉及,如三个“二次”(即二次方程、二次函数、二次不等式),便是经典问题.二次方程,一直相伴我们左右,与我们结下很深的友谊!一些貌似与二次方程无关的问题,如高次方程或一些无理方程,按常规套路,有时却往往碰壁而行不通,而若胸中怀有二次方程情结,思路常有豁然开朗之感,收到柳暗花明之效.下面撷取几例分析.例1(2006年交大自主招生)设k≥9,解方程x3+2kx2 +k2x+9k+27=0.解析换个角度,整理成一个关于k的二次方程xk2+(2x2+9)k+x3 +27=0,△=(2x2 +9)2-4x(x3+27)=(6x-9)2,则k=-(2x2+9)±(6x-9)/2x即k=-(2x2+9)+(6x-9)/2x或k=-(2x2+9)-(6x-9)/2x,整理得x2+(k-3)x+9=0或k=-x-3,解得x=3-k±√(k-9)(k+3)(k≥9)或x=k-3.
一元二次方程、二次不等式、自主招生、无理方程、经典问题、高次方程、二次函数、解方程、友谊、思路、情结、解析、接触、角度、高中、分析、初中
G63;O12
2012-02-21(万方平台首次上网日期,不代表论文的发表时间)
共2页
65-66