数学史融入导数几何意义教学的新探索 ——用笛卡尔圆法突破切线的极限定义
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

数学史融入导数几何意义教学的新探索 ——用笛卡尔圆法突破切线的极限定义

引用
将笛卡尔圆法融入导数的几何意义教学,不仅能联系学生熟知的圆的切线,从"形"上动态展示切线的定义过程,与教材"切线是割线的极限位置"定义不谋而合,更能通过笛卡尔圆法用代数方法确定切线位置的复杂性,与极限定义的切线求法形成鲜明对比,让学生理解切线用极限定义的合理性与简洁性.

数学史、导数的几何意义、笛卡尔圆法、极限

O122.1(初等数学)

2022-09-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

31-35

相关文献
评论
暂无封面信息
查看本期封面目录

中学教研(数学)

1003-6407

33-1069/G4

2022,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn