基于GWO优化SVM的小麦籽粒优劣分级研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16035/j.issn.1001-7283.2021.01.028

基于GWO优化SVM的小麦籽粒优劣分级研究

引用
小麦籽粒优劣不仅是产量及品质的重要决定因素,也是育种适应性的综合指标.为了提高小麦籽粒优劣分级的准确率,同时克服神经网络中存在的收敛速度慢、容易陷入局部极值等缺陷,提出一种灰狼算法(GWO)优化支持向量机(SVM)的小麦籽粒优劣分级方法,以航麦8805为研究对象,利用图像处理技术对小麦籽粒图像进行预处理并提取小麦籽粒的形态、颜色和纹理等21个特征.然后采用灰狼算法对支持向量机的两个参数(c、σ)进行优化,建立GWO-SVM模型,从而对小麦籽粒进行优劣分级.与其他算法相比,GWO优化SVM的算法对小麦籽粒的分级准确率有明显的提高,对小麦籽粒优劣分级的准确率可达到95.08%.

小麦籽粒、优劣分级、灰狼优化算法、支持向量机

河北省教育厅重点研究项目ZD2016158

2021-03-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

200-206

相关文献
评论
暂无封面信息
查看本期封面目录

作物杂志

1001-7283

11-1808/S

2021,(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn