植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响
遥感是从田块到区域乃至全球范围无损探测叶面积指数(LAI)的有效方法.土壤背景是LAI感研究的重要制约因素之一,而土壤类型是组成土壤背景的主要部分,对植被冠层-土壤的光学性质有重要影响,但目前植冠下土壤类型背景对遥感LAI算的影响尚不明确.该文通过分析归一化差异植被指数、修正型土壤调节植被指数、修正的叶绿素吸收比率指数、红边拐点、红边振幅、红边面积、红边对数指数和归一化差异光谱指数在不同土壤类型下对LAI的敏感性,挖掘最不敏感的光谱参数;通过比较两种回归模型(偏最小二乘回归和随机森林回归)在单一土壤类型和多种土壤类型区对LAI的预测精度,探究将单一土壤类型下发展的LAI算模型应用到复杂土壤类型地区时可能出现的问题.结果表明:(1)虽然8种光谱指数对LAI的敏感性因土壤类型不同而差异明显,但红边拐点受植冠下土壤类型影响最小;“lambda-by-lambda”波段优选算法不仅可以提供对LAI敏感的光谱区间,而且可在一定程度上为抵抗植冠下土壤类型差异影响的光谱指数构建提供可行思路;(2)回归模型的LAI颀测精度因是否考虑土壤类型而不同,但在小区域尤其是田块尺度研究时,对变量的解释能力是选择模型的第一考虑,而偏最小二乘回归在此方面优于随机森林回归;在未知地表先验知识的前提下,随机森林回归对大区域LAI估算比偏最小二乘回归适合,但地表先验知识的获取对LAI遥感估算仍然十分必要.
遥感、土壤类型、冬小麦叶面积指数、光谱指数、偏最小二乘回归、随机森林回归
41
国家自然科学基金41771370;国家重点研发计划2017YFD0600903
2018-03-30(万方平台首次上网日期,不代表论文的发表时间)
共16页
1273-1288