基于深度学习的政务表格单元格结构检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.20056/j.cnki.ZNMDZK.20230216

基于深度学习的政务表格单元格结构检测

引用
当前政务领域中涵盖大量复杂异构表格,其结构检测困难,识别准确率较低并且单元格边缘拟合效果较差.针对该问题,在掩膜区域卷积神经网络(Mask R-CNN)的基础上,以政务表格单元格结构为对象,提出一种改进的政务表格单元格结构检测方法.首先,在Mask R-CNN算法的主干网络及特征金字塔中加入通道注意力机制,增强有效特征通道权重;然后,对分割产生的掩膜结果使用基于规则和形态学方法进行优化以提升单元格分割边缘拟合度.实验结果表明:改进后的表格单元格结构检测模型在此数据集G-Tab及公开表格数据集ICDAR2013上的精确率和召回率都有明显提升,能够验证改进模型的有效性.

表格结构识别、深度学习、掩膜区域卷积神经网络、注意力机制

42

TP391(计算技术、计算机技术)

国家重点研发计划;中央高校基本科研业务费专项资金资助项目;智能政务机器人平台关键技术研究资助项目

2023-03-07(万方平台首次上网日期,不代表论文的发表时间)

共7页

253-259

相关文献
评论
暂无封面信息
查看本期封面目录

中南民族大学学报(自然科学版)

1672-4321

42-1705/N

42

2023,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn