改进卷积神经网络的苹果叶分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12130/znmdzk.20220112

改进卷积神经网络的苹果叶分类方法

引用
基于机器学习和深度学习的叶分类图像模型过于关注某一类特征而忽视了模型的泛化能力,导致叶片的分类准确度不高、时间开销大.针对这一问题,在研究密集卷积神经网络的基础上,以苹果叶为对象,通过以下几种方法来提高检测效果:(1)增加一个数据不连续掩模层,以缓解训练神经网络时的过拟合现象;(2)使用广义平均池化改造原有池化方法,以增大输入特征的对比度,专注于输入特征图突出的部分,更好地利用来自卷积层输出张量的信息;(3)使用基于标签平滑(LableSmoothing)损失函数防止模型训练时过度拟合.仿真实验表明:改进后的算法不仅可发现原有数据集中存在的同一种病叶的错误标签分类问题,同时提高了整个苹果叶的检测效果.

植物病理;图像分类;数据增强;池化策略;标签平滑

41

TP312(计算技术、计算机技术)

教育部卓越工程师教育培养计划项目产学合作协同育人项目201902214013

2022-02-16(万方平台首次上网日期,不代表论文的发表时间)

共8页

71-78

相关文献
评论
暂无封面信息
查看本期封面目录

中南民族大学学报(自然科学版)

1672-4321

42-1705/N

41

2022,41(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn