基于多核极限学习机的遥感影像林地信息提取
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.14067/j.cnki.1673-923x.2018.09.004

基于多核极限学习机的遥感影像林地信息提取

引用
高光谱遥感影像包含了大量的波段信息,能够很好地应用于地物的识别.基于单核的高光谱遥感影像极限学习机分类模型,因其实施简单、分类精度高、训练时间短,已被广泛地应用于高光谱遥感影像识别.但是核特征的选取,以及单核特征表达的单一性,限制了模型分类精度的进一步提高.为了解决此问题,受多核极限学习机(MK-ELM)思想的启发,首先使用核方法,提取了遥感影像的多核特征表达;然后利用多核极限学习机理论,同时优化极限学习机结构参数以及多核特征融合系数,获得最优的分类模型.为了说明MK-ELM的有效性,在Indian pines数据集上做了对比实验,该实验证明基于多核极限学习机遥感影像分类模型的分类精度较单核极限学习机有明显地提高,MK-ELM的分类整体精度为80.2%,Kappa系数高达78%;同时将多核极限学习机应用到芷江林场的林地信息提取,其分类精度高达89.1%,Kappa系数达86%.

高光谱遥感影像、单核极限学习机、多核极限学习机

38

S771.8(森林工程、林业机械)

湖南省教育厅优秀青年项目14B193;长沙市科技计划项目k1508007-11;湖南省林业科技计划项 目XLK201740

2018-08-27(万方平台首次上网日期,不代表论文的发表时间)

共6页

20-25

相关文献
评论
暂无封面信息
查看本期封面目录

中南林业科技大学学报

1673-923X

43-1470/S

38

2018,38(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn