3种模型在GF-2影像的生物量估测中的比较
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.14067/j.cnki.1673-923x.2018.01.011

3种模型在GF-2影像的生物量估测中的比较

引用
为了研究高分二号(GF-2)影像生物量估测的模型效果,以攸县黄丰桥林场为研究区,在研究区内采用随机抽样的方法,结合国家森林资源连续清查样地,获取了共47个样地的生物量数据.对GF-2影像进行预处理,结合相关研究,提取8个单波段信息、24个多波段组合信息、4个植被指数以及海拔、坡度、坡向等39个因子作为建模的自变量,采用主成分分析、偏最小二乘和BP神经网络3种方法建立生物量估测模型.结果表明:主成分回归模型的实测值和预测值的决定系数R2为0.44,模型的估测精度为65.83%;偏最小二乘回归模型的R2为0.50,模型的估测精度为67.66%;BP神经网络模型的R2为0.79,模型的估测精度为78.62%.比较可知, BP神经网络模型效果最好.

GF-2、主成分回归模型、偏最小二乘回归模型、BP神经网络

38

S771.8(森林工程、林业机械)

"十三五"国家重点研发计划子课题"单木-林分尺度人工林资源遥感精细检测技术"2017YFD0600902;湖南省科技厅项目"林业遥感大数据与生态安全"2016TP1014

2018-02-01(万方平台首次上网日期,不代表论文的发表时间)

共6页

62-67

相关文献
评论
暂无封面信息
查看本期封面目录

中南林业科技大学学报

1673-923X

43-1470/S

38

2018,38(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn