10.11817/j.issn.1672-7207.2020.02.012
基于多方向Gabor特征图协同表示的鲁棒人脸识别
为提高基于稀疏表示分类(SRC)算法在可变光照、姿态和表情下的人脸识别性能,提出一种基于多方向Gabor特征图(MGFM)和协同表示分类(CRC)的鲁棒人脸识别方法.首先,对人脸图像进行多方向多尺度Gabor变换,并融合同一方向不同尺度的Gabor特征;其次,在每个方向的融合特征图上提取Gist特征.在进行人脸识别时,可采取2种方法:1)将人脸图像所有方向的Gist特征直接串联或自适应加权后串联构成人脸全局特征向量,并使用协同表示分类器得到识别结果;2)对人脸图像每个方向的Gist特征向量分别使用协同表示分类器进行预分类,预分类时使用自适应K近邻策略确定候选类并进行评分,取总得分最高的类作为识别结果.最后,在ORL,Extended Yale B和AR等人脸数据库上开展人脸识别实验,由提出的方法分别取得99.8%,100%和99.7%的识别准确率和较快的执行速度.研究结果表明:本文方法利用多方向Gabor特征图(MGFM)建立人脸图像的特征表示能有效描述人脸局部信息,利用自适应K近邻策略改进协同表示分类算法能取得较高的识别准确率和执行效率.
人脸识别、协同表示、多方向Gabor特征图、自适应K近邻
51
TP391.41(计算技术、计算机技术)
国家自然科学基金资助项目61775172,51805386;湖北省教育厅科研计划项目D20191104
2020-04-10(万方平台首次上网日期,不代表论文的发表时间)
共8页
377-384