基于二次修正的LBP算子和稀疏表示的人脸表情识别
针对传统局部二元模式(LBP)算子存在直方图维数过高而导致识别速度降低和二值数据对噪声很敏感的问题,在分析传统LBP算子的原理基础上,对人脸表情特征的数据量增加、人脸表情特征向量和特征识别过程的优化进行如下改进:将人脸表情图像经过小波包的分解和重构,得到4幅不同频段的图像,从而有效地增加原表情图像的数据量;采用修正的LBP算法对人脸表情图像进行特征提取,并通过稀疏表示模型优化其特征向量,有效地降低传统LBP直方图的维数,提高人脸表情识别率,二次修正的LBP算法鲁棒性好;构建基于神经网络的多分类器模型,融合多特征多分类器的输出,有效地提高表情特征分类的准确性和稳定性.研究结果表明:与传统LBP算法对比,本算法用于人脸表情的识别时,其识别率得到较大幅度提高,算法鲁棒性好.
LBP算子、自动识别、鲁棒性、纹理
45
TN911.73
2014-08-11(万方平台首次上网日期,不代表论文的发表时间)
1503-1509