充填钻孔寿命SVM优化预测模型研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

充填钻孔寿命SVM优化预测模型研究

引用
基于充填钻孔是充填料浆从地表输送到井下采场的咽喉工程,是矿山正常运转的保障,对矿山充填钻孔使用寿命进行预测十分重要,建立支持向量机(SVM)回归预测模型,用训练集对模型进行训练,以验证集预测值的均方误差作为适应度函数,通过遗传算法(GA)对SVM模型参数进行优化选择,应用优化得到的SVM模型对预测集进行预测.以某矿为例,通过GA得到SVM模型最优参数:适应值(均方误差)为0.011 1,惩罚系数C为47.076 8,核函数参数σ为2.263 8.采用优化的SVM模型对预测集充填钻孔寿命进行预测,预测结果的最大预测相对误差为8.6%,平均相对误差为5.2%.对比BP神经网络(最大相对误差为13.6%),优化的SVM模型预测结果更加理想,精度更高.

充填、钻孔寿命、支持向量机、遗传算法

45

TD853(矿山开采)

2014-06-06(万方平台首次上网日期,不代表论文的发表时间)

536-541

相关文献
评论
暂无封面信息
查看本期封面目录

中南大学学报(自然科学版)

1672-7207

43-1426/N

45

2014,45(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn