基于改进GM(1,1)和SVM的长期电量优化组合预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于改进GM(1,1)和SVM的长期电量优化组合预测模型

引用
针对中长期电量预测可使用的相关历史数据较少、影响因素较为复杂等特点,提出一种基于改进GM(1,1)和支持向量机的优化组合预测模型.该模型将改进灰色预测模型和支持向量机模型进行组合,采用蛙跳寻优算法求取组合预测模型中各单一模型的权重,构建基于蛙跳优化的组合预测模型.将优化后的组合预测模型应用于我国中长期电量预测,选择我国1991-2005年电量进行分析,对2006-2010年的电量进行预测,并与一般组合预测模型及各单一模型进行比较.研究结果表明:本文方法得到的电量平均相对误差为2.06%,比等权组合预测模型、方差-协方差优选组合预测模型以及各单一预测模型的预测精度都有所提高.

组合预测、蛙跳算法、灰色预测、支持向量机

43

TU457;TU413.6(土力学、地基基础工程)

国家自然科学基金;中央高校基本科研业务费专项

2012-08-31(万方平台首次上网日期,不代表论文的发表时间)

共5页

1803-1807

相关文献
评论
暂无封面信息
查看本期封面目录

中南大学学报(自然科学版)

1672-7207

43-1426/N

43

2012,43(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn