基于特征注意力机制的RNN-Bi-LSTM船舶轨迹预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-9159.2022.05.013

基于特征注意力机制的RNN-Bi-LSTM船舶轨迹预测

引用
[目的]为更准确预测船舶轨迹,基于RNN、Bi-LSTM和注意力机制,研究一种结合特征注意力机制的RNN-Bi-LSTM的船舶轨迹预测模型.[方法]基于AIS数据构建基于循环神经网络(RNN)与双向长短时记忆网络(Bi-LSTM)的混合神经网络模型,并在混合模型中加入特征注意力机制对数据特征进行权重分配,提升模型对船舶轨迹预测精度.[结果]使用实际运行的船舶AIS数据,对模型的有效性和实用性进行验证,测试集均方误差为2.751×10-5、均方根误差为5.245×10-3,在连续弯道预测中的均方误差为4.359×10-6、均方根误差为2.088×10-3.[结论]结合特征注意力机制的RNN-Bi-LSTM相较于传统的预测神经网络,船舶轨迹预测精度更高,尤其在弯道预测中也表现出较好的符合度.

AIS信息、循环神经网络、双向长短时记忆网络、特征注意力机制、船舶轨迹预测

42

P76(海洋环境科学)

2022-10-09(万方平台首次上网日期,不代表论文的发表时间)

共8页

102-109

相关文献
评论
暂无封面信息
查看本期封面目录

广东海洋大学学报

1673-9159

44-1635/N

42

2022,42(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn