基于LDA-TF-IDF和Word2vec文档表示
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-2346.2023.02.016

基于LDA-TF-IDF和Word2vec文档表示

引用
针对自然语言处理中传统文档表示方法上下文语义信息不全,干扰词多等问题,提出了一种基于LDA-TF-IDF和Word2vec的文档表示方法.首先对数据集进行分词、去停用词等预处理;其次,利用LDA主题模型和TF-IDF抽取文档中具有表征性的特征词,并计算对应权重;最后,应用数据集训练Word2vec模型获取词向量,并将抽取的特征词权重融入Word2vec词向量构建文档语义向量.通过分类任务对该方法进行验证,实验结果表明,与已有方法相比该方法在垃圾短信数据集上表现效果更佳,验证了方法的有效性.

LDA主题模型、TF-IDF、word2vec、文档表示

22

TP391.1(计算技术、计算机技术)

浙江省访问工程师项目;浙江纺织服装职业技术学院科研课题

2023-11-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

91-96

相关文献
评论
暂无封面信息
查看本期封面目录

浙江纺织服装职业技术学院学报

1674-2346

33-1351/Z

22

2023,22(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn