基于HMM的高校家庭贫困生认定模型研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-2346.2019.03.013

基于HMM的高校家庭贫困生认定模型研究

引用
为了将HMM的Baum-welch算法应用到高校家庭贫困生认定过程中,首先将学生的经济状态依据客观情况设置为5个状态,然后将得到的观测数据依据外部低成本变量进行加权处理,再将加权处理后的数据按照一定的比例划分为7个等级,对不同等级进行分段统计,并在此基础上提出了使用HMM的Baum-Welch算法解决这个问题时构建初始化参数的方法,最后将迭代的结果依据学生贫困状态期望百分比由高到低顺序进行排序,并将结果与直接计算方法及通过实际调研得到的结论进行对比,通过对比得到了HMM算法在解决此类问题中存在的局限性,同时给出了提高预测准确性的新模型建立的建议.然后将这种方法在其它班级进行了验证,以检验结论的可靠性.

贫困生认定、隐马尔可夫模型、Baum-Welch算法、期望百分比

18

G641(高等教育)

浙江省教育科学规划课题2018SCG226

2019-10-10(万方平台首次上网日期,不代表论文的发表时间)

共10页

75-83,106

相关文献
评论
暂无封面信息
查看本期封面目录

浙江纺织服装职业技术学院学报

1674-2346

33-1351/Z

18

2019,18(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn