目的:探讨采用深度学习技术提升内镜医师在窄带光成像(narrow band imaging,NBI)下判断结直肠息肉性质准确率的价值。方法:收集武汉大学人民医院消化内镜中心结直肠息肉的NBI非放大图片并分为3个数据集,数据集1(2018年1月—2020年10月,1 846张非腺瘤性与2 699张腺瘤性息肉的NBI非放大图片)用来训练和验证结直肠息肉性质鉴别系统;数据集2(2018年1月—2020年10月,210张非腺瘤性息肉和288张腺瘤性息肉的NBI非放大图片)用来比较内镜医师及该系统息肉分型的准确性,同时比较4名消化内镜初学者在该系统的辅助下判断息肉性质的准确性是否有提升;数据集3(2020年11月—2021年1月,141张非腺瘤性息肉和203张腺瘤性息肉的NBI非放大图片)用来前瞻性测试该系统。结果:该系统在数据集2中判断结直肠息肉的准确率为90.16%(449/498),优于内镜医师。消化内镜初学者在有该系统的辅助下,息肉分型准确率显著提升。在前瞻性研究中,该系统的准确率为89.53%(308/344)。结论:本研究开发的基于深度学习的结直肠息肉性质鉴别系统能够显著提升内镜医师初学者的息肉分型准确率。
机器学习、腺瘤性息肉、结直肠肿瘤、窄带光成像
38
国家自然科学基金81672387;湖北省重大科技创新项目2018-916-000-008;湖北省消化疾病微创诊疗医学临床研究中心项目2018BCC337;National Natural Science Foundation of China81672387;Hubei Province Major Science and Technology Innovation Project2018-916-000-008;Project of Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision2018BCC337