10.3321/j.issn:0254-6450.2008.06.024
应用人工神经网络预测个体患原发性高血压病危险度
目的 建立个体患原发性高血压病的预测模型,评价并探讨预测个体患病的新方法.方法 选择3054名社区居民流行病学调查资料,按照年龄、性别均衡性,按4:1分为训练集(2438名)与检验集(616名)两部分,分别用于筛选变量、建立预测模型及对模型的检测和评价.应用人工神经网络(ANN)和logistic回归分析方法建立模型,用ROC方法评价所建立的高血压患病预测模型的优劣.结果 对616名检验集预测,ANN模型的特异性较低,但准确性、灵敏度指标均优于logistic回归模型,ANN2的约登指数为0.8399,明显高于其他两个模型;通过ROC曲线下面积比较模型的预测能力:logistic回归方法曲线下面积(Az=0.732±0.026)小于ANN模型(ANN2和ANN1分别为0.918±0.013、0.900±0.014),即ANN模型有更好的预测判别效能.结论 初步证明在预测个体患高血压病方面,ANN方法预测效能更优,从而为解决个体发病危险预测提供了一个新方法.
高血压、原发性、个体危险度、人工神经网络
29
R1(预防医学、卫生学)
国家高技术研究发展计划863计划2006AA02Z347
2008-07-01(万方平台首次上网日期,不代表论文的发表时间)
共4页
614-617