基于深度学习的乳腺癌保乳术后调强放疗剂量分布预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3760/cma.j.cn112271-20230321-00088

基于深度学习的乳腺癌保乳术后调强放疗剂量分布预测

引用
目的:研究基于深度学习的方法预测乳腺癌保乳术后调强放疗(IMRT)剂量分布,并评估其预测精度。方法:回顾性分析2018年1月至2023年3月在上海国际医学中心接受IMRT的110例左侧乳腺癌保乳术后患者的调强放疗数据,随机固定选择80例作为训练集,随机固定10例作为验证集,剩余20例作为测试集。首先将患者的计算机体层成像(CT)图像、感兴趣区、体素与靶区距离和对应的剂量分布四通道特征作为输入数据,然后使用U-net网络进行训练得到预测模型,利用该模型对测试集进行剂量预测,验证体素与靶区距离特征在剂量预测中的影响,并将剂量预测结果与实际手动计划剂量进行比较。结果:加入体素与靶区距离特征的模型使预测精度更高,测试集中20例患者的剂量评分和剂量体积直方图(DVH)评分分别为2.10±0.18和2.28±0.08,与手动计划剂量分布更加接近( t=2.52、2.40, P<0.05)。靶区和危及器官(OAR)的剂量预测结果与手动计划剂量的偏差在4%以内,健侧乳腺平均剂量增加了13 cGy,均在临床可接受范围内。除PTV 60的 D2、 D98( Di为 i%的PTV体积接受的剂量)、 Dmean(平均剂量)和患侧肺的 V5( Vi为接受 i Gy剂量的OAR体积百分比)、 Dmean差异有统计学意义外( t=3.74、2.91、2.99、3.47、2.29, P<0.05),其他差异无统计学意义( P>0.05)。 结论:基于深度学习的方法可以精准预测乳腺癌保乳术后调强放疗剂量分布,并通过实验证明加入体素与靶区距离特征可以有效提升预测精度,有助于物理师提高计划设计的优质性和一致性。

深度学习、卷积神经网络、剂量预测、调强放疗

43

2024-01-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

779-783

相关文献
评论
暂无封面信息
查看本期封面目录

中华放射医学与防护杂志

0254-5098

11-2271/R

43

2023,43(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn