影像组学与深度学习在评价直肠癌淋巴结状态中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3760/cma.j.cn112149-20211221-01125

影像组学与深度学习在评价直肠癌淋巴结状态中的应用

引用
术前是否存在淋巴结转移是影响直肠癌临床治疗决策和预后的主要因素之一,但现有的影像学标准难以准确判断淋巴结的良恶性,亟需新的方法来解决这一临床难题。近年来影像组学与深度学习在医学影像领域得到了广泛的关注,可自动检测与分割淋巴结、鉴别良恶性淋巴结及预测淋巴结转移的发生等,有望提高术前分期的准确性,进而指导治疗决策。然而不同的研究间结果差异性较大,其中一个重要的原因是各研究之间工作流程存在差异。只有明确、统一并标准化具体操作流程、开展大规模前瞻性外部验证才能实现人工智能辅助诊断模型的转化与推广。该文中以影像组学和深度学习的工作流程为线索,对其在评价直肠癌淋巴结状态方面的研究进行综述。

直肠肿瘤、淋巴结转移、影像组学、深度学习

57

国家自然科学基金81971584;北京市医院管理中心登峰计划DFL20191103;北京市医院管理局重点医学专业发展计划ZYLX201803

2023-05-30(万方平台首次上网日期,不代表论文的发表时间)

共4页

231-234

相关文献
评论
暂无封面信息
查看本期封面目录

中华放射学杂志

1005-1201

11-2149/R

57

2023,57(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn