10.3760/cma.j.cn112149-20201130-01266
多标签学习MRI膝关节运动损伤检测模型辅助诊断的价值
目的:构建多标签学习MRI膝关节运动损伤检测诊断模型,并验证该模型的实际效能。方法:回顾性连续纳入2013年8月至2019年3月解放军东部战区总医院1 343例膝关节运动损伤青年患者的1 391个膝关节MRI图像。采用随机采样法将数据按7∶1∶2分为训练集(
n=973)、验证集(
n=139)及测试集(
n=279)。将膝关节损伤分为半月板损伤、肌腱损伤、韧带损伤、骨与骨端软骨损伤、滑膜关节囊损伤及周围软组织损伤6大类,由放射科医师依各层面图像对所有损伤进行标注作为金标准。根据PyTorch V1.1.0算法包搭建通用YOLO深度学习工具包,开发膝关节运动损伤MRI多标签定位检测模型,并在测试集上验证模型效能,评价其对病灶检测的灵敏度、特异度及平均精度均值。
结果:测试集279个膝关节MRI数据中,MRI多标签学习模型对半月板损伤、肌腱损伤、韧带损伤、骨与骨端软骨损伤、滑膜关节囊损伤及软组织损伤定位检测的平均精度均值分别为83.1%、89.0%、88.0%、85.8%、85.5%和83.2%,整体的平均精度均值为85.8%。模型对肌腱损伤检出效能最高,灵敏度为91.2%,特异度为87.1%。结论:多标签学习MRI膝关节运动损伤检测诊断模型可以有效辅助膝关节运动损伤的定位检测,提高影像诊断工作效率。
膝关节、磁共振成像、运动损伤、多标签学习、深度学习
55
国家重点研发计划2018YFA0701703;National Key Technology R&D Program of the Ministry of Science and Technology2018YFA0701703
2023-05-30(万方平台首次上网日期,不代表论文的发表时间)
共6页
1191-1196