多标签学习MRI膝关节运动损伤检测模型辅助诊断的价值
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3760/cma.j.cn112149-20201130-01266

多标签学习MRI膝关节运动损伤检测模型辅助诊断的价值

引用
目的:构建多标签学习MRI膝关节运动损伤检测诊断模型,并验证该模型的实际效能。方法:回顾性连续纳入2013年8月至2019年3月解放军东部战区总医院1 343例膝关节运动损伤青年患者的1 391个膝关节MRI图像。采用随机采样法将数据按7∶1∶2分为训练集( n=973)、验证集( n=139)及测试集( n=279)。将膝关节损伤分为半月板损伤、肌腱损伤、韧带损伤、骨与骨端软骨损伤、滑膜关节囊损伤及周围软组织损伤6大类,由放射科医师依各层面图像对所有损伤进行标注作为金标准。根据PyTorch V1.1.0算法包搭建通用YOLO深度学习工具包,开发膝关节运动损伤MRI多标签定位检测模型,并在测试集上验证模型效能,评价其对病灶检测的灵敏度、特异度及平均精度均值。 结果:测试集279个膝关节MRI数据中,MRI多标签学习模型对半月板损伤、肌腱损伤、韧带损伤、骨与骨端软骨损伤、滑膜关节囊损伤及软组织损伤定位检测的平均精度均值分别为83.1%、89.0%、88.0%、85.8%、85.5%和83.2%,整体的平均精度均值为85.8%。模型对肌腱损伤检出效能最高,灵敏度为91.2%,特异度为87.1%。结论:多标签学习MRI膝关节运动损伤检测诊断模型可以有效辅助膝关节运动损伤的定位检测,提高影像诊断工作效率。

膝关节、磁共振成像、运动损伤、多标签学习、深度学习

55

国家重点研发计划2018YFA0701703;National Key Technology R&D Program of the Ministry of Science and Technology2018YFA0701703

2023-05-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

1191-1196

相关文献
评论
暂无封面信息
查看本期封面目录

中华放射学杂志

1005-1201

11-2149/R

55

2021,55(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn