钆塞酸二钠增强MRI影像组学和机器学习术前预测肝细胞癌微血管侵犯的价值
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3760/cma.j.cn112149-20200823-01023

钆塞酸二钠增强MRI影像组学和机器学习术前预测肝细胞癌微血管侵犯的价值

引用
目的:探讨基于钆塞酸二钠增强MRI肝胆期影像组学特征的不同机器学习模型术前预测肝细胞癌(HCC)微血管侵犯(MVI)的价值。方法:回顾性分析2015年6月至2020年6月在苏州大学附属第一医院经病理证实的132例HCC患者的资料,MVI阳性72例、阴性60例。按照7∶3的比例以随机种子法分为训练集和验证集。利用PyRadiomics软件提取肝胆期图像影像组学特征,采用最小绝对收缩和选择算子(LASSO)回归5折交叉验证法对训练集临床和影像组学特征进行筛选,得到最优特征子集,然后用6种机器学习方法(决策树、极端梯度提升、随机森林、支持向量机、广义线性模型和神经网络)构建预测模型,采用ROC曲线评估模型的预测能力,采用DeLong检验比较6种机器学习算法曲线下面积(AUC)的差异。结果:经LASSO回归筛选后获得14个特征组成最优特征子集,包括2个临床特征(肿瘤最大径和甲胎蛋白)和12个影像组学特征。训练集中基于最优特征子集构建的决策树、极端梯度提升、随机森林、支持向量机、广义线性模型和神经网络模型预测HCC MVI的AUC值分别为0.969、1.000、1.000、0.991、0.966和1.000,验证集的AUC值分别为0.781、0.890、0.920、0.806、0.684和0.703。验证集中,极端梯度提升与广义线性模型、神经网络的AUC的差异有统计学意义( Z=2.857、3.220, P=0.004、0.001),随机森林与支持向量机、广义线性模型和神经网络AUC的差异有统计学意义( Z=2.371、3.190、3.967, P=0.018、0.001、<0.001),支持向量机与广义线性模型AUC的差异有统计学意义( Z=2.621, P=0.009),其余机器学习模型间AUC的差异均无统计学意义( P>0.05)。 结论:基于钆塞酸二钠增强MRI肝胆期图像的影像组学特征构建的机器学习模型可用于术前预测HCC MVI,其中,极端梯度提升和随机森林模型具有较高的预测效能。

癌,肝细胞、磁共振成像、影像组学、机器学习、微血管侵犯

55

国家自然科学基金81801692;国家重点研发计划2017YFC0114300;苏州市科技计划项目SYS2020125,SS2019057;苏州市民生科技示范工程SS201808;National Natural Science Foundation of China81801692;National Key R&D Program of China2017YFC0114300;Suzhou Science and Technology Plan ProjectSYS2020125, SS2019057;Suzhou Science and Technology Demonstration ProjectSS201808

2023-05-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

853-858

相关文献
评论
暂无封面信息
查看本期封面目录

中华放射学杂志

1005-1201

11-2149/R

55

2021,55(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn