用深度学习和阈值算法自动检出CT平扫图像中肾结石的可行性研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3760/cma.j.cn112149-20190630-00547

用深度学习和阈值算法自动检出CT平扫图像中肾结石的可行性研究

引用
目的:探索使用级联模型在CT平扫图像中自动检出肾结石的可行性。方法:回顾性搜集2018年1月至7月在北京大学第一医院行泌尿系CT平扫并诊断为肾结石的59例患者的临床和影像资料。根据患者CT检查时间将患者图像分为两组:肾脏分割模型训练集(30例)和肾结石检出模型测试集(29例)。建模包括:(1)训练肾脏分割的深度学习模型,采用U-Net神经网络,以dice系数评估肾脏分割算法的性能;(2)在肾脏分割的基础上,用阈值算法和区域生长算法检出所得肾脏区域里的结石;(3)测量肾结石各向径线值(长径、中径和短径)和CT值,并将结果返回到结构化报告。由1名医师记录肾结石位置并手动测量肾结石各向径线值(长径、中径和短径)和CT值作为金标准,计算模型自动检出结石的灵敏度、特异度和准确度,并使用Bland-Altman法分析模型自动测量和医师手工测量结果的一致性。结果:测试集29例患者,共11 358层CT图像,58个肾脏纳入研究,其中38个肾脏有结石,共有56个结石,20个肾脏无结石。使用U-Net模型对测试集11 358层CT图像进行分割,平均dice系数为0.96;其中10 945(96.36%)层图像分割效果很好,dice系数≥0.90。以肾脏为单位,模型在测试集中检出结石的灵敏度、准确度、特异度分别为100%(38/38)、100%(38/38)、100%(20/20);以结石为单位,模型检出结石的灵敏度、准确度分别为100%(56/56)、96.6%(56/58)。结论:肾结石检出级联算法可以在CT平扫图像中自动检出肾结石,并自动返回到结构化报告中,提高临床工作效率。

肾结石、自动化、体层摄影术,X线计算机

54

2023-05-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

869-873

相关文献
评论
暂无封面信息
查看本期封面目录

中华放射学杂志

1005-1201

11-2149/R

54

2020,54(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn