10.3760/cma.j.cn112151-20210314-00204
基于注意力机制网络的多实例学习框架实现慢性胃炎多项病理指标的自动识别
目的:应用注意力机制网络的多实例学习(Attention-MIL)框架技术,实现慢性胃炎多项指标的自动识别。方法:收集2018年1月1日至12月31日复旦大学附属肿瘤医院诊断为胃炎活检病例1 015例和上海市浦东医院诊断为胃炎活检病例115例,所有病理切片经扫描仪进行数字化处理,转化为全载玻片成像(whole slide imaging,WSI),WSI标签依据胃炎病理报告,包含活动性、萎缩和肠化3项指标。所有的WSI分为训练集、单一测试集、混合测试集和外部测试集,Attention-MIL模型在3个测试集上评价自动识别的准确性。结果:Attention-MIL模型在240例WSI单一测试集上的受试者工作特征曲线下面积(AUC)值分别为:“活动性”0.98,“萎缩”0.89,“肠化”0.98,3项指标的平均准确率为94.2%。模型在117例WSI混合测试集上的AUC值分别为:“活动性”0.95,“萎缩”0.86,“肠化”0.94,3项指标的平均准确率为88.3%。模型在115例WSI外部测试集上的AUC值分别为:“活动性”0.93,“萎缩”0.84,“肠化”0.90,3项指标的平均准确率为85.5%。结论:在慢性胃炎的人工智能辅助病理诊断中,Attention-MIL模型的诊断准确性非常接近病理医师的诊断结果,这种弱监督下的深度学习模式适于病理人工智能技术的实际应用。
胃炎、人工智能、模式识别,自动、信号处理,计算机辅助、注意力
50
上海市经济和信息化委员会2019年上海市人工智能创新发展专项支持项目2019-RGZN-01017;Shanghai Municipal Economic and Informatics Commission′s Project on Artificial Intelligence Innovation and Development 20192019-RGZN-01017
2023-05-30(万方平台首次上网日期,不代表论文的发表时间)
共6页
1116-1121