基于注意力机制网络的多实例学习框架实现慢性胃炎多项病理指标的自动识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3760/cma.j.cn112151-20210314-00204

基于注意力机制网络的多实例学习框架实现慢性胃炎多项病理指标的自动识别

引用
目的:应用注意力机制网络的多实例学习(Attention-MIL)框架技术,实现慢性胃炎多项指标的自动识别。方法:收集2018年1月1日至12月31日复旦大学附属肿瘤医院诊断为胃炎活检病例1 015例和上海市浦东医院诊断为胃炎活检病例115例,所有病理切片经扫描仪进行数字化处理,转化为全载玻片成像(whole slide imaging,WSI),WSI标签依据胃炎病理报告,包含活动性、萎缩和肠化3项指标。所有的WSI分为训练集、单一测试集、混合测试集和外部测试集,Attention-MIL模型在3个测试集上评价自动识别的准确性。结果:Attention-MIL模型在240例WSI单一测试集上的受试者工作特征曲线下面积(AUC)值分别为:“活动性”0.98,“萎缩”0.89,“肠化”0.98,3项指标的平均准确率为94.2%。模型在117例WSI混合测试集上的AUC值分别为:“活动性”0.95,“萎缩”0.86,“肠化”0.94,3项指标的平均准确率为88.3%。模型在115例WSI外部测试集上的AUC值分别为:“活动性”0.93,“萎缩”0.84,“肠化”0.90,3项指标的平均准确率为85.5%。结论:在慢性胃炎的人工智能辅助病理诊断中,Attention-MIL模型的诊断准确性非常接近病理医师的诊断结果,这种弱监督下的深度学习模式适于病理人工智能技术的实际应用。

胃炎、人工智能、模式识别,自动、信号处理,计算机辅助、注意力

50

上海市经济和信息化委员会2019年上海市人工智能创新发展专项支持项目2019-RGZN-01017;Shanghai Municipal Economic and Informatics Commission′s Project on Artificial Intelligence Innovation and Development 20192019-RGZN-01017

2023-05-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

1116-1121

相关文献
评论
暂无封面信息
查看本期封面目录

中华病理学杂志

0529-5807

11-2151/R

50

2021,50(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn