基于乳腺病理组织学的HER2智能预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3760/cma.j.cn112151-20200721-00581

基于乳腺病理组织学的HER2智能预测

引用
目的:通过深度学习方法,探讨病理形态学与乳腺癌HER2过表达/扩增的关系。方法:采集2012—2018年中日友好医院345张乳腺癌HE染色切片,所有样本均拥有HER2的准确诊断结果,并包含0、1+、2+、3+多种HER2类型。数字化扫描后,204张用于弱监督模型训练,141张用于模型测试。在训练过程中,首先通过癌区识别模型,提取热点区域,随后将热点区域输入弱监督分类模型进行深度学习模型的建立。在测试过程中,对比使用单阈值与双阈值策略的效果,验证双阈值策略在临床可用性方面的作用。结果:在单阈值策略下,深度学习模型可达到81.6%的灵敏度及42.1%的特异度,AUC=0.67[95% CI(0.560,0.778)]。采用双阈值策略,模型的灵敏度为96.3%,特异度达到89.5%。 结论:仅使用HE组织学切片,通过深度学习技术,能够以一定的准确率实现乳腺癌HER2基因状态的预测。基于双阈值策略,能够以高灵敏度和特异度筛出大量样本。

乳腺肿瘤、基因, erbB-2、人工智能、诊断

50

2023-05-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

344-348

相关文献
评论
暂无封面信息
查看本期封面目录

中华病理学杂志

0529-5807

11-2151/R

50

2021,50(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn