基于多尺度图像增强结合卷积神经网络的纸病识别分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11980/j.issn.0254-508X.2018.08.009

基于多尺度图像增强结合卷积神经网络的纸病识别分类

引用
针对造纸工业中传统纸病识别分类依赖于特征描述子和分类器的选择问题,提出一种多尺度图像增强结合卷积神经网络的纸病识别分类方法.该方法利用多尺度形态学梯度增强纸病图像的边缘轮廓信息,突出缺陷梯度特征,然后利用卷积神经网络(CNN)学习纸病图像的特征并分类识别,从而实现纸病的准确识别分类.实验结果表明,该方法对纸病识别分类的结果明显优于HOG+SVM、LBP+ SVM以及传统CNN方法,在Caltech101、KTH-TIPS以及本课题的数据集上的分类正确识别率分别达到98.44%、99.23%和99.64%.与现有纸病识别分类方法相比,本课题方法不需针对各种纸病进行缺陷特征提取和特征描述,能快速实现纸病的准确识别分类.

图像增强、卷积神经网络、多尺度形态学梯度、图像分类

37

TS77;TP302.1(造纸工业)

国家自然科学基金61461025;国家自然科学基金61811530325;中国博士后科学基金项目2016M602856

2018-09-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

47-54

相关文献
评论
暂无封面信息
查看本期封面目录

中国造纸

0254-508X

11-1967/TS

37

2018,37(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn