S-DetectTM分类技术诊断BI-RADS 4类乳腺肿块
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13929/j.issn.1003-3289.2020.09.010

S-DetectTM分类技术诊断BI-RADS 4类乳腺肿块

引用
目的 观察S-DetectTM分类技术鉴别诊断BI-RADS 4类乳腺良恶性肿块的价值.方法 对94例经二维超声诊断为BI-RADS 4类乳腺肿块患者(共104个肿块)行S-DetectTM分类技术检查,以手术或穿刺活检病理结果作为金标准,评价S-DetectTM分类技术、BI-RADS分类及二者联合应用诊断乳腺BI-RADS 4类良恶性肿块的价值.结果 104个乳腺肿块,经病理确诊为良性41个、恶性63个.S-DetectTM分类技术诊断乳腺BI-RADS 4a类乳腺肿块的敏感度(SE)66.67%,特异度(SP)89.29%、阳性预测值(PPV)57.14%、阴性预测值(NPV) 92.59%;对乳腺BI-RADS 4b类肿块分别为90.91%、60.00%、88.24%及66.67%;对乳腺BI-RADS 4c类肿块分别为95.83%、66.67%、95.83%及66.67%.S-DetectTM分类技术联合BI-RADS分类诊断乳腺肿块的SE、SP、准确率明显均高于单独运用(P均<0.05).结论 S-DetectTM分类技术判断乳腺BI-RADS 4a类良性肿块、BI-RADS 4b类及BI-RADS 4c类恶性肿块均有较高价值.S-DetectTM分类技术联合BI-RADS分类可明显提高鉴别BI-RADS 4类乳腺良恶性肿块的效能.

乳腺肿瘤、超声检查、乳腺影像报告和数据系统、S-DetectTM分类

36

R737.9;R445.1(肿瘤学)

2020-11-20(万方平台首次上网日期,不代表论文的发表时间)

共5页

1319-1323

相关文献
评论
暂无封面信息
查看本期封面目录

中国医学影像技术

1003-3289

11-1881/R

36

2020,36(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn