基于WA-SVM模型的高炉铁水含硅量预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于WA-SVM模型的高炉铁水含硅量预测

引用
基于小波在处理非线性、非平稳随机信号和支持向量机在解决非线性、高维数、小样本等问题的优点,提出了一种二者组合的预测模型.先用小波变换将铁水含硅量的时间序列分解成不同的高频和低频层次,对不同层次构建支持向量机模型进行预测,然后通过序列重构得到原始时间序列的预测结果.利用山东莱钢1号高炉在线采集的数据作为应用案例,WA-SVM组合模型与工程常用的AR模型和单一的最小二乘支持向量机模型的预测结果比较,预测精度有明显提高.

小波分析(WA)、支持向量机(SVM)、铁水含硅量、组合预测

19

TP27;TF531(自动化技术及设备)

浙江省教育厅科学研究项目Y200805877;浙江省自然科学基金Y107110

2009-05-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

8-12

相关文献
评论
暂无封面信息
查看本期封面目录

中国冶金

1006-9356

11-3729/TF

19

2009,19(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn