10.3969/j.issn.1001-4632.2023.04.21
基于多阶段特征优选的高速铁路列车晚点预测模型
为克服大规模高维数据集不相关和冗余信息对列车晚点预测模型性能的影响,提出一种融合多阶段(MS)特征优选方法和改进深度神经网络(IDNN)模型的高速铁路列车晚点预测模型(简称MS-IDNN模型).首先,利用MS特征优选方法,基于列车运行实绩提取影响列车晚点的相关特征,构建初始特征集,并对其进行数据清洗和特征优选,生成最优特征子集;其次,将列车晚点特征映射为IDNN模型的神经元,采取全连接方式提取特征间的交互关系,并叠加多个浅层神经网络以克服深度神经网络反向传播过程中梯度消失的缺陷,实现列车到达晚点的精准预测;最后,以武广高速铁路列车运行实绩为例,验证MS-IDNN模型的有效性.结果表明:相比初始特征集,构建得到的最优特征子集特征维度降低了54.29%;相比6种基线模型,MS-IDNN模型的平均绝对误差和均方根误差分别至少降低4.85%和8.97%,在沿线至少66.66%的车站中表现出更高的预测性能;MS-IDNN模型能够有效剔除数据集中的不相关和冗余信息,提升列车晚点预测精度.
高速铁路、晚点预测、多阶段特征优选、深度神经网络、反向传播
44
U292.4(铁路运输管理工程)
中央高校基本科研业务费专项资金资助项目;国家重点研发计划;教育部人文社会科学研究项目
2023-08-18(万方平台首次上网日期,不代表论文的发表时间)
共11页
219-229