基于2阶级联轻量级卷积神经网络的高铁接触网悬挂紧固件缺陷识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-4632.2020.05.14

基于2阶级联轻量级卷积神经网络的高铁接触网悬挂紧固件缺陷识别方法

引用
基于高铁接触网悬挂运行状态监测图像,分析监测图像与普通图像的区别;将紧固件缺陷检测问题转换为紧固件检测和运行状态精细识别2个过程,提出基于2阶级联卷积神经网络的紧固件缺陷识别方法.首先,设计紧固件检测网络,由轻量级特征提取网络、全局注意力模块及相互增强的分类器和检测器组成,实现目标紧固件实例的高效检测;然后,搭建1个包含4个卷积层、2个池化层、1个全连接层和1个输出层的多标签分类网络,完成紧固件运行状态的精细分类,实现缺陷识别.运用紧固体缺陷识别方法,对某高铁线路接触网状态监测图像数据进行试验分析,结果表明:2阶级联卷积神经网络的方法可以快速准确地检测紧固件的缺陷,紧固件定位平均检出率达98.2%,紧固件缺陷平均识别精度达95.8%,较单一检测网络提高约21.5%.

高速铁路、2阶级联、卷积神经网络、接触网、缺陷识别、紧固件、目标检测

41

U226.8(电气化铁路)

国家重点研发计划;中国国家铁路集团有限公司科技研究开发计划

2020-11-12(万方平台首次上网日期,不代表论文的发表时间)

共12页

115-126

相关文献
评论
暂无封面信息
查看本期封面目录

中国铁道科学

1001-4632

11-2480/U

41

2020,41(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn