10.3969/j.issn.0258-8021.2024.04.006
基于条带池化与血管增强的眼底图像动静脉分类方法
视网膜血管动静脉管径比是定量分析糖尿病、高血压等慢性疾病的先决条件,是许多心血管疾病的重要风险指标.随着深度学习技术的发展,许多基于卷积神经网络的方法凭借其捕获高级语义的能力,在眼底图像动静脉分类方面取得了较大的进展.然而,这些方法大多是采用叠加局部卷积和池化操作方式,难以很好地应用于条带形状的眼底视网膜血管.在本研究中,为了更有效地提取条带形状的视网膜血管特征,引入条带池化来捕获空间像素远距离依赖关系,同时考虑到动静脉交错复杂的特性,结合空间金字塔池化并提出了一种全新的混合池化技术以扩大神经网络的感受野和学习上下文信息.另一方面,考虑到眼底图像中血管与非血管分布的比例极不平衡,引入了血管增强模块,利用血管分布信息和高斯核函数约束的血管边缘的信息作为权重校正动静脉特征抑制背景特征,进而解决血管与背景分布比例不平衡问题.在分别包含40、22、45张彩色眼底图像的3种国际公开数据集DRIVE、LES和HRF上的实验表明,所提算法的平衡精度(BACC)分别为0.955、0.946、0.967,表明本研究结合条带池化与血管增强的方法能够较好解决眼底图像中动静脉交错复杂和类别不平衡问题,实现对眼底视网膜动静脉的精确分类,具有较高的应用价值.
眼底图像、动静脉分类、条带池化、混合池化、血管增强
43
R318(医用一般科学)
京津冀基础研究合作专项H2021202008
2024-09-04(万方平台首次上网日期,不代表论文的发表时间)
共9页
438-446