基于Cascade Rcnn的超声甲状腺结节检测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0258-8021.2022.01.008

基于Cascade Rcnn的超声甲状腺结节检测研究

引用
甲状腺超声图像由于对比度低、边缘不清晰、高噪声和周围组织复杂难辨等问题,给医生诊断甲状腺疾病造成困难.针对此问题,采用Cascade Rcnn目标检测算法,分别以ResNet50、Resnet101以及融合压缩激励注意力模块SE-ResNet50、SE-ReNet101为主干网络,对从某三甲医院获取的1 513例(其中良性结节832例,恶性结节681例)甲状腺超声图像,在专业超声科医生的指导下进行预处理,制作本次实验使用的标准coco格式数据集.采用迁移学习的方式将从Imagenet大型数据库上预训练得到的权重迁移到本次实验模型结构中,经过4个主干网络的实验结果对比,以SE-ResNet101为主干网络的Cascade Rcnni算法,在结节定位和判别方面,实现了精确率92.4%,召回率86.2%,特异性95.1%,F1值89.2%,mAP值82.4%的检测效果,对辅助医生进行甲状腺超声图像的诊断具有一定的临床指导意义.

甲状腺超声图像、Cascade Rcnn、目标检测、迁移学习

41

R318(医用一般科学)

上海市科委医学引导项目;微创励志创业基金

2022-04-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

64-72

相关文献
评论
暂无封面信息
查看本期封面目录

中国生物医学工程学报

0258-8021

11-2057/R

41

2022,41(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn