基于GA-RBF神经网络和sEMG的下肢动作识别方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0258-8021.2022.01.005

基于GA-RBF神经网络和sEMG的下肢动作识别方法研究

引用
为了提高人体肌电信号对于下肢动作识别的准确率,提出一种基于遗传算法(GA)优化的径向基(RBF)神经网络分类模型.通过采集人体日常8种下肢动作的表面肌电信号并选择"sym6"系小波函数对肌电信号进行滤波预处理,使用主成分分析法(PCA)对时频域特征降维,把特征向量输入GA算法优化的RBF神经网络进行训练和识别.实验结果表明,该方法对同一受试者8种下肢动作的平均识别率为94.00%±0.45%;对15位不同受试下肢动作识别率达到89.30%,比传统BP神经网络的识别准确率提高11.8%,预测时间缩短6 s.所提出的方法为肌电信号应用于下肢智能康复机器人的意图识别研究提供参考,有助于病人的康复.

下肢表面肌电信号、小波变换、运动识别、RBF神经网络、主成分分析

41

R318(医用一般科学)

百城百园项目;天津市研究生科研创新项目

2022-04-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

41-47

相关文献
评论
暂无封面信息
查看本期封面目录

中国生物医学工程学报

0258-8021

11-2057/R

41

2022,41(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn