融合多特征脑电评估孤独症儿童
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0258-8021.2021.05.05

融合多特征脑电评估孤独症儿童

引用
孤独症是一种复杂的神经发育性脑疾病,其早期发现和精确诊断非常重要.从54名孤独症和50名正常儿童的脑电信号中提取功率谱、熵、双谱相干性以及相干性等多特征进行分析研究,并对每组特征进行独立样本t检验分析组间差异;为提高分类性能,提出融合多特征脑电进行分析,进一步采用最大相关最小冗余算法进行特征选择,最后利用支持向量机建立分类模型.结果显示,用单一特征分类,得到的分类准确率为72%,灵敏度为73.94%,特异性为67.74%,F1分数为69.74%,因此单一特征所建立的分类模型性能较差;在融合多特征进行分类时,选择前25个特征建立模型,具有较高的分类精度(93.45%±0.79%),此时灵敏度为91.73%±0.42%,特异性为94.01%±0.36%,F1分数为92.54%±0.31%,且AUC达到0.96,相比单一特征分类模型具有良好的性能.研究结果可以为孤独症的辅助诊断提供科学客观依据,为孤独症儿童后期康复提供可靠参考.

孤独症;脑电信号;融合;机器学习;分类

40

R318(医用一般科学)

国家自然科学基金62001153

2021-12-06(万方平台首次上网日期,不代表论文的发表时间)

共9页

550-558

相关文献
评论
暂无封面信息
查看本期封面目录

中国生物医学工程学报

0258-8021

11-2057/R

40

2021,40(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn